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Introduction

The growth of single crystals with precisely-controlled properties is
one of the most demanding goals of modern materials processing, and its
realization depends on the application of fundamentals from solid-state
physics, chemistry, thermodynamics, and transport phenomena. Bulk
semiconductor substrates and many high-power solid-state laser host
materials are typically produced by solidification from the melt. The
quality of the crystals produced in this manner hinges on process
conditions which are predominantly determined by the transport of heat,
mass, and momentum in the melt and crystal. Accurate modeling of melt
crystal growth promises to enhance our understanding of existing systems
and improve the design and control of future processes, thereby
accelerating the development of advanced materials and devices.

Theoretical modeling often is the only way to probe the complex
interactions which characterize melt crystal growth, especially the
effects of process changes on internal features of growth which cannot be
directly measured on-line, such as the shape of the melt/crystal
interface or temperature gradients within the growing crystal. 1In this
way, computer simulation can serve as a design tool for developing
control strategies and process innovations. Further, modeling serves as
a test bed for theoretical experiments which extend our knowledge of how
fundamental physical phenomena govern the process.

This report attempts to provide a glimpse of how analysis and
modeling have impacted the understanding of Czochralski (CZ) crystal

growth. The reader is referred to several excellent reviews [1-3] for
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more in-depth information regarding melt crystal growth modeling. In the
following sections, the physical transport mechanisms of CZ growth are
analyzed, sample results are presented for semiconductor and oxide growth
simulations, an assessment of the current state of the art of modeling is

discussed, and future developments are projected.

Analysis

Often the successful practice of crystal growth relies on
experiential intuition; however, the underlying science of crystal growth
is based on the strong foundation of first principles. Our goal is to
obtain a fundamental understanding of the controlling features of CZ
growth by assessing the underlying physical phenomena. These features
can vary widely for different materials and processes, leading to the
dilemma in analyzing crystal growth systems that few theoretical
generalizations are both practically useful and universally valid. 1In
spite of this difficulty, two typical systems are appraised which are
representative of the major materials produced by the Czochralski method,
a semiconductor, silicon, and an oxide, gadolinium gallium garnet
(Gd3Ga5012. hereafter referred to as GGG).

The Czochralski method is illustrated schematically in Fig. la for a
typical oxide growth process. A single-crystal seed is dipped into a
crucible filled with molten material, allowed to equilibrate, and slowly
withdrawn upward. Upon the successful initiation of growth from the
seed, suitable manipulations of the process parameters, such as pull rate
and heater power, prompt the crystal to grow out and maintain a constant
diameter as the melt is depleted from the crucible. At the end of the
growth run, the crystal is slowly cooled to ambient temperature and is

then removed for subsequent device processing.
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A typical semiconductor CZ growth system is very similar to that
depicted in Fig. la, but the crucible is often heated by a surrounding
resistance heater. The liquid-encapsulated Czochralski (LEC) method, in
which the crystal is grown through a floating layer of inert material
designed to contain volatile species in the melt, is an important means
of producing compound semiconductors.

Understanding Czochralski crystal growth involves analysis on several
disparate length and time scales. Characteristic scales are listed in
Table 1, and three length scales used to classify the CZ process are
shown schematically in Fig. 1. The macro-scale comprises the entire
growth station, the intermediate scale inciudes the crystal and melt, and
the micro-scale embodies phenomena occurring at phase boundaries.
Ultimately, the quality of the crystal is expressed in micro-scale
quantities such as concentration distribution, stress distribution, and
dislocations. However, attempts to influence the process necessarily
occur at the macro-scale. The coupling of widely different physical
phenomena at each level is the primary challenge of theoretical analysis
and is where the test-bed of modeling can have the most impact on
improving a given process, as compared with the Edisonian approach of
experimental trial and error. This analysis focuses primarily on the
intermediate scale as a continuum, similar to the approach highlighted in
(4], and connections with the macro- and micro-scales are accomplished

through the appropriate application of boundary conditions and

constitutive relations.
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The flow of the melt is driven by the temperature field through
buoyancy forces and surface tension forces, by crystal and crucible
rotation, and by the solidification of melt to crystal. Intense
buoyancy-driven flows are a prevailing feature of melt growth. The
importance of this mechanism is estimated by the Grashof number, Gr,
defined in Table 2. For CZ silicon and GGG growth, the Grashof number is
very large, and a free-fall velocity associated with buoyancy-driven
flows is approximately 1-10 cm/s, see Table 1. Flows caused by
temperature induced surface-tension gradients can also be intense for
these systems, as indicated by Marangoni numbers, Ma, which are
significant. If thermocapillary flows dominate and surface-tension
effects balance viscous forces in a boundary layer at the meniscus [5],
the characteristic velocity for both systems is estimated to be as high
as 1-10 cm/s. Flows caused by solidification are nearly equivalent to
the crystal pull rate and are several orders of magnitude lower than
those driven by buoyancy or surface tension gradients.

Additional driving forces for flow are crystal and crucible rotation,
leading to characteristic velocities as large as 10 cm/s. The flows
impressed on the system by rotation can be as large as those which
naturally arise; however, these flows are directed azimuthally and impact
the meridional natural convective flows in a secondary manner. The
complexities of rotational flows and their interactions with

buoyancy-driven flows will not be addressed, see [6,7] for further

discussions of flows of this type.
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The celebrated Reynolds number, Re, can be thought of as a ratio
between inertial forces and viscous forces. When this number is large,
the flow is dominated by nonlinear convective terms, complicating both
the physics and the methodology for solution of the governing equations.
Using estimates of the maximum characteristic velocities of Table 1, the
estimated Reynolds number is large, Re>103 for both systems, indicating
that inertial forces are important and that momentum boundary layers are
likely to form along the bounding surfaces of the melt. MWhen intense
buoyancy flows dominate the flow field, the Reynolds number scales with
the square root of the Grashof number, Re ~ Gr]/z.

The application of a strong magnetic field to semiconductor systems
can effectively damp meridional flow in the melt [8], and this technique
is actively being explored for controlling heat and mass transfer in CZ
growth. For oxide systems and for semiconductor growth in the absence of
magnetic stabilization, the direct control of buoyancy-driven and
Marangoni flow is nearly impossible. The driving forces for flow can be
reduced by decreasing length scales and temperature gradients across the
melt, but this is often at the expense of conditions needed to maintain
the growth of the crystal. Crystal and crucible rotation can also
influence the flow state, but as alluded to previously, the interaction
of rotational and meridional flow is extremely complex. Crystal
rotation has been used effectively to modify the flow field adjacent to
the solidification interface. A detailed discussion of hydrodynamics in

crystal growth systems is given by Carruthers [6].
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The ratios of hydrodynamic and surface tension normal forces at the
meniscus are expressed in terms of the Bond number, Weber number, and
Capillary number, defined in Table 2. The Bond number is a ratio of
gravity-induced hydrostatic pressure and surface tension forces. The
relatively large Bond numbers for both systems indicate that gravity
forces will level most of the melt free surface; however, curvature will
occur near the tri-junction of melt, crystal, and ambient, over a
characteristic length scale of less than a centimeter (see Table 1).
Since the surface tension of these melts is quite high, fluid mechanical
forces do not play a large role in setting the meniscus shape. When the
dynamic pressure field is sufficiently modified, such as during fast
crucible or crystal rotation, the Weber number can become large enough to
affect the shape of the free surface. On the other hand, viscous forces
acting on the interface are invariably negligible, as evidenced by the
very small Capillary numbers for the two systems.

An appropriate energy balance includes transport via conduction,
convection, and radiation by transmission through the medium. The
importance of heat transfer by convection to that by pure conduction is
represented by the dimensionless Peclet number for heat transfer, Pe.
The Peclet number is the product of the Reynolds number and the Prandtl
number, Pr, which is a material constant representing the ratio of
momentum diffusion to heat diffusion. The effect of fluid flow on heat
transfer increases for materials with larger Prandtl numbers, and vice
versa. The Prandt] number for molten semiconductors is approximately

1072, while it is believed to be from 1-10 for oxide melts. For
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flows of comparable intensity, heat transfer by convection is much more
important in an oxide growth system than in a semiconductor melt.
However, as indicated by the estimates in Table 2, convective heat
transfer plays an important role in both semiconductor and oxide systems;
this is demonstrated by calculations in [9]. In semiconductor systems,
convective heat transfer in the melt can be suppressed by magnetic
stabilization of the flow field, as discussed previously.

The flow of radiative energy through a medium occurs when
temperatures are sufficiently high and the medium is sufficiently
transparent to black-body thermal radiation at those temperatures. The
importance of internal radiation heat transfer is estimated by computing
the ratio of conductive flux to radiative flux. For an optically thick
medium (aRL »> 1, where ap is the spectral absorbance and L is a
characteristic length), this ratio is approximated by the
conduction-to-radiation parameter N [10] in Table 2. Internal radiative
heat transport is probably minor in silicon systems but may be quite
important for GGG growth. This coarse estimate tends to exaggerate the
importance of radiative transport for systems which are not optically
thick, yet experimental evidence suggests that internal radiative
transfer may be important in the growth of other oxide crystals, such as
YAG, yttrium aluminum garnet [11]. 1In this case, optically active
dopants and radiative exchange features of the furnace, such as heat

shields near the crystal, can be expected to have a large impact on

growth conditions.
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Solidification at the melt/crystal interface releases latent heat to
the surroundings. The importance of this heat source on modifying the
local temperature field is estimated by the product of the solid phase
Peclet number, Pes, and the Stefan number, S, referred to as the
modified Stefan number in Table 2. The magnitude of these quantities
indicate that latent heat is significant in semiconductor growth but much
less so in oxide growth. Consequently, the pull rate of the crystal will
have an important effect on heat transfer only in semiconductor systems.

Exterior surfaces communicate with the furnace enclosure by two
mechanisms, convective cooling into the gaseous ambient and radiation
energy exchange with enclosure surfaces. The Biot and Radiation numbers
are measures of the relative importance of these mechanisms. For both
systems, radiation heat transfer is predominant and severely complicates
the thermal environment within a conventional CZ puller. Since radiative
heat transfer is an inherently nonlinear phenomenon characterized by
lTong-range interactions, subtle changes in enclosure geometry can have
profound effects on heat transfer.

A species in a fluid is transported by convection and molecular
diffusion. The importance of these different modes of mass transfer can
be assessed in a manner similar to the analysis for heat transfer
presented above. The importance of fluid flow on the transport of a
dilute dopant in the melt is represented by the solutal Peclet number,
Pec=ReSc. where Sc is the Schmidt number, the mass transfer analog of
the Prandtl number. Using values for V and L Tisted in Table 1 and

estimating a binary diffusion coefficient of DAB = 10—5-10'4 cmz/s,
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the solutal Peclet number is very large, Pec = 105-107, hence
convection plays the primary role in setting mass transfer in melt
crystal growth. Convective mass transfer will remain dominant in
magnetic CZ semiconductor melts long after convective heat transfer has
been suppressed, since the Schmidt number is so much larger than the
Prandtl number.

The extreme sensitivity of mass transfer to convection places added
import on the need to accurately predict fluid flow in these systems.
This sensitivity also situates these problems among the most difficult
numerical simulations of today. A sense of some of the obstacles
encountered in these calculations can be inferred from the characteristic
length scales in Table 1. Solute transport into the crystal is controlled
by phenomena occurring in a boundary layer which is as much as three
orders of magnitude smaller than the dimensions of the melt, and within
this thin boundary layer adjacent to the melt/crystal interface, both the

effects of bulk hydrodynamics and flow due to solidification are

important [1].

Modeling

Czochralski growth analysis dates back over thirty years to the
period when the CZ method was first being applied to the growth of
semiconductor crystals. Billig [12] derived an analytical relation to
describe the effect of pull rate on the radius of a germanium crystal.
With the advent of high-speed digital computers, numerical modeling of

heat transfer and fluid flow elucidated many features of bulk melt
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behavior [3,13]. However, none of these efforts have been able to
investigate the coupling of interfacial phenomena and field quantities
which 1s crucial for understanding how process conditions ultimately
affect the crystal end-product.

Thermal-capillary models presented by Crowley [14] and Derby et al.
[15] were the first efforts to comprehensively describe the interaction
of heat transfer with interfacial phenomena in semiconductor systems.
Unfortunately, these analysis are only valid where the characteristic
velocity in the melt is small, so that conduction is dominant and
Pe << 1. Recently, Derby et al. [16] have extended their model to
include system dynamics and moving interfaces, and Sackinger et al. [9]
have incorporated axisymmetric, steady-state fluid mechanics to the
thermal-capillary model. Here, we present sample results from these
models and explore the strengths and weaknesses of such approaches.

The model domains comprise regions of melt, crystal, and crucible; an
encapsulant layer is included for the simulation of 1iquid-encapsulated
Czochralski growth of gallium arsenide (see Fig. 2a) and pedestal and
crucible insulation are included for the GGG simulation (see Fig. 5a).
The model LEC crucible is radiatively heated by a resistance heater at
constant temperature, whereas heat is deposited directly into the
crucible via induction heating in the GGG system. Cooling of the model
surfaces is calculated by Gebhart's method for a diffuse-grey enclosure
so that the detailed exchange of radiation is captured. These two
pathways for heat flow into and out of the system serve to link the

intermediate scale with the surrounding macro-scale (see Fig. 1).
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The melt/crystal interface is placed along the melting point isotherm
of the system. The meniscus is determined by a normal force balance
which accounts for capillarity, gravity forces, and hydrodynamic
effects. The shape of the crystal evolves from an overall balance of
heat transfer coupled with a detailed description of wetting angles at
the melt/crystal/ambient tri-junction. These features connect the
continuum model with the micro-scale phenomena of crystal growth.

The equations which describe the process are discretized by the
Galerkin finite element method over an adaptive mesh of quadrilateral
elements. The mesh deforms to follow the positions of the melt/crystal
interface, the melt meniscus (and encapsulant meniscus for LEC growth),
and the shape of the crystal. Nonlinearities are present in the equation
set from radiation heat transfer and melt hydrodynamics, and the
free-boundaries introduce additional strong nonlinearities.
Consequently, a sophisticated quasi-Newton iteration scheme is employed

to efficiently solve the model equations.

LEC Gallium Arsenide Growth

Brown and colleagues [15-17] at the Massachusetts Institute of
Technology have developed a fully dynamic, thermal-capillary model for
conduction-dominated systems which, although inappropriate for moderate
to large-scale semiconductor systems (where the Peclet number in the melt
is significant, see Table 2), is valid for semiconductor systems when a
strong magnetic field is applied to damp convection. Results are
presented here from the study of Thomas et al. [17] for the theoretical

simulation of an experimental LEC growth run.



-13-

The experiment was performed using a Hamco model 3000 crystal puller
modified for LEC growth of gallium arsenide by M.J. Wargo and A.F. Hitt
of the Department of Materials Science and Engineering at the
Massachusetts Institute of Technology. The six inch diameter crucible was
heated by a graphite resistance heater, and the growth took place with an
applied axial magnetic field of 4,000 gauss, enough to completely damp
convective heat transfer through the melt. The heater temperature set
point and pull rate history were directly input to the dynamic
thermal-capillary model to simulate growth conditions.

Figure 2 details the evolution of the model predictions; the system
interfaces are shown with temperature contours plotted at 25 K increments
about the melting point temperature of gallium arsenide (1511 K). The
initial configuration for the simulation is the steady-state solution
shown in Fig. 2a. Heat flows through the system from the heated crucible
outer wall, downward to the crucible base and upward to the encapsulant
and crystal surfaces. The seed crystal displays a nearly one-dimensional
temperature distribution, although some radiative heating of the seed
just above the encapsulant surface is visible.

A drop in heater power causes the crystal to grow initially outward
from the seed. The cone of the crystal after four hours of growth is
clearly seen in Fig. 2b. As more of the crystal emerges from the
encapsulant and views the hot crucible wall, cooling is inhibited, and
the crystal radius tends to decrease. This trend accelerates as the

inward sloping crystal face views the hot encapsulant and melt surfaces
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below. Apparent at all times is the drastic change in the radial
temperature gradient of the crystal as it exits the encapsulant. This
effect very likely produces large thermal stresses which can abet the
formation of dislocations in the crystal.

The final theoretical crystal shape is compared with an outline of
the actual crystal in Figure 3. The theoretical shape captures many of
the features of the experimental crystal, although the actual rates of
diameter increase and decrease are under-predicted. Nevertheless, the
model predictions are within approximately 20 percent of the experiment,
a result which is very encouraging considering the inaccuracies in
thermophysical properties and model idealizations regarding heat transfer

through the boric oxide encapsulant, see [17] for further details.

Z Oxi rowth

The addition of melt fluid mechanics is d requisite for describing
the CZ growth of oxide materials, since convective heat transfer
predominates in the melt. This extension to the thermal-capillary model
is presented in [9], and a detailed analysis of induction heating of the
crucible is given in [18]. The resulting integrated process model is
described in [19], and sample results from that analysis are shown here.

The CZ method is a transient batch process, since the crucible slowly
empties with time. However, we invoke a guasi-steady-state assumption to
describe transport phenomena and interface shapes in the system,
depicting the growth process by calculations with the melt volume as a

parameter and each simulation as a snapshot in time. This assumption is
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warranted by the disparate time scales which characterize the process,
see Table 1. Compared with process times of several days or longer, all
other phenomena occur on a vanishingly small time scale.

The time-averaged power distribution delivered to an eight inch
diameter iridium crucible by the induction heating system is shown in
Fig. 4. This distribution is used as input for the GGG growth
simulations shown in Fig. 5, where each calculation employs a
steady-state controller which adjusts the absolute level of power to the
crucible in order to achieve a crystal of desired radius. Isotherms
spaced at 40K about the melting point (2023 K) are shown on the left side
of the figure, and streamlines are displayed on the right half of the
plot. In these calculations, crystal and crucible rotation and
thermocapillary flow are not included; only steady, axisymmetric,
buoyancy-driven flow is considered.

A nearly linear axial temperature distribution is present in the
crystal in Fig. 5a, and the influence of radiative heat transfer into the
crystal from the hot crucible wall is evident at the crystal surface by
the upward deflection of the temperature contours. Large gradients
through the pedestal and insulation result from the low conductivity of
these regions and the large temperature drop across them. The
temperature field in the melt exhibits a well-mixed, nearly isothermal
core with boundary layers, and the melt/crystal interface is deflected
toward the melt by the convective effects of the flow turning downward at
the centerline.

The streamlines show a primary recirculation cell driven by buoyancy;
warm fluid rises along the crucible wall and cooler fluid falls at the

centerline. A secondary vortex nested within the primary vortex is
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apparent near the bottom center of the crucible along with a small
counter-rotating vortex attached to the bottom of the crucibie. This
structure results from the stratified density distribution along the
bottom of the crucible./Since the bottom of the crucible is losing heat
to the pedestal, there is a region of cooler liquid underlying warmer,
lighter fluid. As the flow down the centerline plunges through this
density gradient, an opposing force is experienced which gives rise to
the vortex pattern. This phenomenon is often observed in the lee of a

mountain range when warm air descends into a valley of stably-stratified

cool air.

Another less apparent flow feature is the vortex spanning the upper
corner of the domain, from wall to meniscus. Similar separation arises
in lTow Prandtl number fluids near the appearance of time-dependent flows
[201, and this feature may also signal a pluming instability caused by
the destabilizing axial temperature gradient at the surface of the melt.
This computed steady flow state may very well be physically unstable;
however, calculations to confirm this hypothesis have not yet been
performed.

As the melt level drops, the crystal views more of the hot crucible
wall, decreasing the overall cooling of the crystal. Even though a
constant radius has been maintained, the axial temperature gradients in
the crystal have decreased enormously. The structure and intensity of the
flow also change as the melt level drops, with the maximum velocity
decreasing as temperature gradients decrease and as the melt aspect ratio
becomes progressively flatter. The effects of heat loss from the bottom

of the crucible are still discernible by the melt isotherms and the wavy

streamlines in Fig. 5c.
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Initially the power to the crucible decreases slowly with depletion
of the melt, from 36.9 KA in Fig. 53 to 36.8 KW in Fig. 5b, and at the
end of the run the power level rises slightly to 37.2 KW. As the crystal
grows deeper into the crucible, wall radiation reduces the cooling of the
crystal, thereby decreasing the needed power to maintain a constant
radius. Simultaneously, convective heat flow through the melt diminishes
since the characteristic velocity is decreasing, and this tends to
increase the needed power to the crucible. These competing heat transfer
mechanisms tend to counterbalance, so that in spite of significant
changes in melt geometry, power changes are nearly constant over much of
the run. This indicates that diameter control in oxide growth is less
demanding than one might expect from the inherent complexity of the

process.

Summary

Dramatic advances in modeling sophistication over the past decade has
rendered simulations capable of capturing realistic complexity in melt
crystal growth. The physical understanding achieved through such
modeling in itself is notable, since clearer understanding will enable
process advances. The use of models as more expedient and cost-effective
alternatives to laboratory experiments for testing new ideas and concepts
is becoming feasible.

However, in spite of the tremendous gains, several hurdles remain.
The complexity of real-life hydrodynamics cannot be underestimated in
melt crystal growth. In low Prandtl number semiconductor systems, flows

are most likely time-dependent or chaotic for all but the smallest
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systems unless a strong magnetic field is applied. Similar complexity
also exists for large-scale oxide systems, although the mechanisms of
flow instability are inherently different. Rotational flows interacting
with buoyancy flows are also notoriously complex, often three-dimensional
and time-dependent.

Without accurate knowledge of fluid mechanics, we cannot hope to
accurately perform mass transfer calculations for dopants in these
systems. As discussed previously, convection-dominated mass transfer and
transport through boundary layers pose some of the most difficult of
numerical problems. Indeed, this is a premier area of research in
computational methods today.

Heat transport calculation poses other problems, mostly with regard
to radiative transfer. As discussed above, heat transport via internal
radiation may be very important for some systems, notably oxides. The
integro-differential equations which describe coupled conduction and
radiation have been solved only for a few idealized systems.

More research is needed on constitutive relations or other methods to
bridge the disparate length scales which characterize microscopic
phenomena and macroscopic field quantities [1,2,4]. The assumption that
the melt/crystal interface lies along the melting point isotherm does not
take into account the crystallographic effects of facetting nor the
formation of a cellular interface. The length scale for these phenomena,
indicated in Table 1, is up to six orders of magnitude smaller than the
macroscopic length scale for the system, making direct coupled
calculations infeasible at present and unlikely in the near future. A
related issue concerns dislocation creation and propagation in a

thermally-induced stress field.
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A final impediment is the dearth of thermophysical property
measurements for high-temperature semiconductor and oxide systems.
Although performing such property measurements is unglamorous and
expensive, they must be performed if the full value of modern simulation
is to be realized.

What does the future hold and where are we going? Unless dramatic
changes occur in computer hardware or numerical algorithms, the daunting
prospect of direct three-dimensional time-dependent simulation of a
large-scale CZ puller seems unlikely and inappropriate, at least in the
near-term future. The most promising area is the use of modeling to
redesign systems or map out optimal windows of operation, for example,
conditions where melt hydrodynamics can be expected to be axisymmetric
and time-independent. The use of strong magnetic fields coupled with
theoretical analysis is an excellent example of this approach. Modeling
will also directly address the inverse problem of process design and the
optimization of control strategies, leading eventually to model-based
on-line control. In these specific ways and by enlarging the fundamental
knowledge base, modeling will have an increasingly major impact on the

practice of crystal growth.
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List of Symbols

agr Spectral absorbtion coefficient

Cp Heat capacity

Dap Binary diffusion coefficient

g Gravitational constant

h Heat transfer coefficient

k Thermal conductivity

L Characteristic length, crucible radius
n Index of refraction

R Crystal radius

Tr Characteristic temperature for radiation
v Characteristic velocity

Ve Crystal pull rate

Greek Symbols

Qpm Thermal diffusivity in melt
Thermal diffusivity in crystal
Coefficient of thermal expansion

Surface tension

s Heat of fusion

(27]

g

b

%% Thermocapillary coefficient

AH

AT Characteristic temperature difference
€

Emissivity
Ao Wavelength for interface morphology
u Viscosity
v Kinematic viscosity
p Density
o Stefan-Boltzmann constant
w Induction heater frequency
Q. Crucible rotation rate

Q, Crystal rotation rate
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Characteristic Length Scales (cm)

Description Expression Si GGG
Crucible Radius L 10 10
Meniscus curvature V1/ee 10711 10~1
Diffusion boundary layer DaB/Vy 10-2-10"! 1-10
Concentration boundary layer LPpe;'/? 1072- 107! | 1072- 1071
Solidification wavelength Ao 1075- 1071
Characteristic Time Scales (s)
Description Expression Si GGG
Geometrical time scale L/V, 10*- 105 10° - 10°
Conduction time scale L? /am 10? 108
Convection time scale L)V 1-10 1-10
Induction time scale w! 1075-10"*
Characteristic Velocities (cm/s)
Description Expression Si GGG
Buoyancy-driven flow V9BATL 1-10 1-10
Surface tension-driven (Marangoni) flow [(%)2 A“T;y] 7 1-10 1071-1
Crystal pull velocity Ve 1074-10"3 | 1076-107°
Forced convection, crystal 27 Rf1, 0-10
Forced convection, crucible 2z L, 0-10

Table 1.

tength, time, and velocity for the CZ process.

Order-of-magnitude estimates for characteristic scales of




Fluid Mechanics

Name Definition Description Si GGG
ATL® Buoyancy force 8 109 6 _ 108
Grashof Number Gr = .‘I.LV!_ Viscous Torce 10°-10 10°- 10
d
. _ 7ATL Surface tension gradient 6 7 2 3
Marangoni Number | Ma = % Viscous force 10°-10 10“- 10
Reynolds Number Re = YL Inertial force 10*— 105 103 - 104
v 1scous torce
2 .
— gpL Hydrostatic force 2 2 103
Bond Number Bo = v Surface Tension force 10 10°- 10
2 .
_pV Inertial force -2 _ -2 _
Weber Number We = 5 Surface tension force 10 1 10 10
Capillary Number Ca= Vu Viscous force 10~4 10°3-10-?
P y -9 Surface tension force
Heat Transfer
Name Definition Description Si GGG
- v Momentum diffusivity —2 _
Prandt] Number Pr = & Thermal diffusivity 10 1-10
_ - VL Convective heat transport 2_1n3 3_ 105
Peclet Number Pe = RePr = o Conductive heat transport 10¢-10 10°- 10
C-R Paramet N=_kor Conductive flux ;.7 5 1) | 1-10 | 1071-10
arameter T 4n‘e l1ative flux (ar )
. _ VpLAH Latent heat release -2 -1
Modified Stefan No. | Pe,S = a’;?j;m‘ onductive s 1 107%-10
: . _ hL Convective surface flux -2 -2 _10-1
Biot Number Bi= & Conduction to surface 10 10 10
e _ eoT3L Radiative surface flux
Radiation Number | Ra= —kL e dietion to e face 1 1-10
Mass Transfer
Name Definition Description Si GGG
. _ v Momentum diffusivity 12 2 3
Schmidt Number Sc = Dus Solutal diffusivity 10 -10 10— 10
_ _ VL | Convective mass transport 5 107 5 7
Solutal Peclet No. Pe. = ReSc = Dap Diffusive mass transport 10°- 10 10° - 10

Table 2.  Order-of-magnitude estimates for dimensionless groups

which characterize the C2 process.




jrf-lnsulation

(a) Entire furnace

e
_—Crystal
o Yo
° 7 Crucible
O o
of 0
o S Melt
o) CN
° - ° —Induction
coil
i -
J R ——Pedestal
RRR i S

(b) Crystal and melt

Crystal

Crystal

Melt/crystal
interface

Melt

Ambient

Crystal
shape

Tri-junction

Meniscus

(c) Tri-junction

Figure 1. Schematic diagram of the Czochralski growth of an oxide

crystal showing relevant length scales.
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Figure 2. Results from the dynamic thermal-capillary model

predicting the LEC growth of gallium arsenide, from [17].
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Figure 3. Comparison of theoretical and experimental GaAs crystal

shapes, from [17].
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Figure 5. Quasi-steady-state simulation of GGG growth run, from

{19]. HWeights refer to amount of melt left in crucible.






